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1 Figure 1

[87]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit

# --- Load the data (assumes CSV has columns: 'Time', 'Input', 'Output')
data = pd.read_csv('20BLoolw7.csv', header=None)
data.columns = ['Time', 'Input', 'Output']

# Convert columns to numeric (forcing any non-numeric values to NaN)
data['Time'] = pd.to_numeric(data['Time'], errors='coerce')
data['Input'] = pd.to_numeric(data['Input'], errors='coerce')
data['Output'] = pd.to_numeric(data['Output'], errors='coerce')

# If your CSV is in seconds, use time as is. If in microseconds, multiply by␣
↪1e-6.

time_sec = data['Time'].values # in seconds (adjust if needed)
input_voltage = data['Input'].values
output_voltage = data['Output'].values

# --- Plot Input and Output Signals to Identify the Natural Response Region ---
plt.figure(figsize=(10, 6))
plt.plot(time_sec, input_voltage, label='Input (Square Wave)')
plt.plot(time_sec, output_voltage, label='Output (Capacitor Voltage)')
plt.xlabel('Time (s)')
plt.ylabel('Voltage (V)')
plt.title('Input and Output Signals')
plt.legend()
plt.grid(True)
plt.show()

# --- Compute the Voltage Difference ---
voltage_diff = input_voltage - output_voltage

# (Optional) Plot the voltage difference to see where it's positive
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plt.figure(figsize=(10, 4))
plt.plot(time_sec, voltage_diff, 'b.-')
plt.xlabel('Time (s)')
plt.ylabel('Voltage Diff (V_in - V_out)')
plt.title('Voltage Difference vs. Time')
plt.grid(True)
plt.show()

# ----------------------------------------------------------------------
# STEP 1: Identify the approximate time the natural response starts.
# For example, from my plot, you might see the input goes low
# at t ~ 0.0056 s. We'll call this 'step_time'.
# ----------------------------------------------------------------------
step_time = 0.0005 # 0.0005 s = 500 µs (adjust as needed)

# ----------------------------------------------------------------------
# STEP 2: Restrict to a short window after 'step_time' for the natural decay.
# For instance, let's look 0 to 100 µs after step_time.
# ----------------------------------------------------------------------
t_min = step_time
t_max = step_time + 100e-6 # 100 µs after step_time

mask_time = (time_sec >= t_min) & (time_sec <= t_max)
mask_diff = (voltage_diff > 0)

# Combine the masks
mask = mask_time & mask_diff

time_sec_valid = time_sec[mask]
voltage_diff_valid = voltage_diff[mask]

# Check if we have valid points
if len(time_sec_valid) == 0:

raise ValueError("No valid data points found in the specified window.␣
↪Adjust step_time or t_max.")

# ----------------------------------------------------------------------
# STEP 3: Take the natural log of the voltage difference
# ----------------------------------------------------------------------
ln_diff_valid = np.log(voltage_diff_valid)

# (Optional) Shift time so that the natural response starts at t=0
# This step makes the fit more intuitive (t=0 => start of discharge).
time_sec_valid_shifted = time_sec_valid - step_time

# --- Plot the Logarithm of the Voltage Difference ---
plt.figure(figsize=(10, 6))
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plt.plot(time_sec_valid_shifted, ln_diff_valid, 'bo', label='Data (ln(Input -␣
↪Output))')

plt.xlabel('Time after Step (s)')
plt.ylabel('ln(Voltage Difference)')
plt.title('Logarithm of Voltage Difference vs Time (Natural Response)')
plt.grid(True)
plt.legend()
plt.show()

# --- Define a Linear Function for Fitting: ln_diff = ln(V0) - t/�
def linear_func(t, intercept, slope):

return intercept + slope * t

# --- Fit the Linear Model to the Valid Data ---
popt, pcov = curve_fit(linear_func, time_sec_valid_shifted, ln_diff_valid)
intercept_fit, slope_fit = popt
intercept_err, slope_err = np.sqrt(np.diag(pcov))

# --- Plot the Best-Fit Line ---
t_fit = np.linspace(time_sec_valid_shifted.min(), time_sec_valid_shifted.max(),␣

↪200)
ln_fit = linear_func(t_fit, intercept_fit, slope_fit)

plt.figure(figsize=(10, 6))
plt.plot(time_sec_valid_shifted, ln_diff_valid, 'bo', label='Data (ln(Input -␣

↪Output))')
plt.plot(t_fit, ln_fit, 'r--', linewidth=3, label='Best-fit line')
plt.xlabel('Time after Step (s)')
plt.ylabel('ln(Voltage Difference)')
plt.title('Linear Fit of ln(Voltage Difference) vs Time (Natural Response)')
plt.grid(True)
plt.legend()
plt.show()

# --- Calculate the Time Constant: slope = -1/�
tau_measured = -1.0 / slope_fit
tau_uncertainty = tau_measured * (slope_err / abs(slope_fit))

print(f"Intercept: {intercept_fit:.2e} ± {intercept_err:.2e}")
print(f"Slope: {slope_fit:.2e} ± {slope_err:.2e}")
print(f"Measured time constant (tau): {tau_measured:.2e} s ± {tau_uncertainty:.

↪2e} s")
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Intercept: 6.43e-01 ± 3.32e-03
Slope: -1.48e+04 ± 5.75e+01
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Measured time constant (tau): 6.76e-05 s ± 2.63e-07 s

2 Figure 2

[99]: import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit

# Given information (in volts):
Vi_step = -0.94125 # Initial voltage of step response (-941.25 mV)
Vf_step = 0.91575 # Final voltage of step response (+915.75 mV)
tau_true = 58e-6 # True time constant = 58 microseconds

# The total voltage change for the step is:
V0 = Vf_step - Vi_step # Should be about 1.857 V

# Create a time vector for the step response from 0 to 500 microseconds.
t_step = np.linspace(0, 500e-6, 500) # time in seconds

# Define the step response function:
# V(t) = Vf + (Vi - Vf)*exp(-t/tau)
def step_response(t, tau):

return Vf_step + (Vi_step - Vf_step) * np.exp(-t / tau)

# Compute the step response using the true tau (for simulation)
V_step = step_response(t_step, tau_true)

# For the linearization, we use the fact that for an RC charging process:
# Vf - V(t) = V0 * exp(-t/tau)
# Taking the natural logarithm gives:
# ln(Vf - V(t)) = ln(V0) - t/tau
# We'll compute ln(Vf - V(t)) from our simulated data.
diff_step = Vf_step - V_step
ln_diff_step = np.log(diff_step)

# Now we perform a linear fit to ln_diff_step vs. t
def linear_func(t, intercept, slope):

return intercept + slope * t

popt, pcov = curve_fit(linear_func, t_step, ln_diff_step)
intercept_fit, slope_fit = popt
intercept_err, slope_err = np.sqrt(np.diag(pcov))

# Calculate the time constant from the slope.
# The theoretical relation is: slope = -1/tau, so:
tau_fitted = -1.0 / slope_fit
tau_fitted_err = tau_fitted * (slope_err / abs(slope_fit))
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# Plot the original step response
plt.figure(figsize=(10,6))
plt.plot(t_step * 1e6, V_step * 1e3, 'b-', label='Step Response')
plt.xlabel('Time (µs)')
plt.ylabel('Voltage (mV)')
plt.title('Step Response (Vi = -941.25 mV, Vf = +915.75 mV)')
plt.grid(True)
plt.legend()
plt.show()

# Plot the logarithm of the voltage difference along with the best-fit line
plt.figure(figsize=(10,6))
plt.plot(t_step * 1e6, ln_diff_step, 'bo', label='Data: ln(Vf - V(t))')
t_fit = np.linspace(t_step.min(), t_step.max(), 200)
plt.plot(t_fit * 1e6, linear_func(t_fit, intercept_fit, slope_fit),

'r--', linewidth=2, label='Best-fit line')
plt.xlabel('Time (µs)')
plt.ylabel('ln(Vf - V(t))')
plt.title('Linearized Step Response: ln(Vf - V(t)) vs. Time')
plt.grid(True)
plt.legend()
plt.show()

# Print the linear fit parameters and the computed tau
print("Fitted linear parameters:")
print(" Y-intercept: {:.2e} ± {:.2e}".format(intercept_fit, intercept_err))
print(" Slope: {:.2e} ± {:.2e}".format(slope_fit, slope_err))
print("Calculated time constant (tau): {:.2e} s ± {:.2e} s".format(tau_fitted,␣

↪tau_fitted_err))
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Fitted linear parameters:
Y-intercept: 6.19e-01 ± 1.76e-15
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Slope: -1.72e+04 ± 6.08e-12
Calculated time constant (tau): 5.80e-05 s ± 2.04e-20 s

3 Figure 3

[95]: import numpy as np
import matplotlib.pyplot as plt

# Given information (in volts):
# Step response: initial = -941.25 mV, final = +915.75 mV
# Natural response: initial = +915.75 mV, final = -941.25 mV
# Both have a measured tau = 58 microseconds

Vi_step = -0.94125 # -941.25 mV in volts
Vf_step = 0.91575 # 915.75 mV in volts
Vi_nat = 0.91575 # 915.75 mV in volts
Vf_nat = -0.94125 # -941.25 mV in volts
tau = 58e-6 # 58 microseconds in seconds

# Time arrays for plotting:
# 1) Step response from t=0 to 500 microseconds
# 2) Natural response from t=500 microseconds to 1000 microseconds
t_step = np.linspace(0, 500e-6, 500) # 0 → 500 �s
t_nat = np.linspace(500e-6, 1000e-6, 500) # 500 → 800 �s

# Define the exponential step response:
# V_step(t) = Vf_step + (Vi_step - Vf_step)*exp(-t/tau)
def step_response(t):

return Vf_step + (Vi_step - Vf_step)*np.exp(-t / tau)

# Define the natural (discharge) response:
# V_nat(t) = Vf_nat + (Vi_nat - Vf_nat)*exp(-(t - t0)/tau), for t >= t0=500 �s
def natural_response(t):

t0 = 500e-6 # The discharge starts at 500 �s
return Vf_nat + (Vi_nat - Vf_nat)*np.exp(-(t - t0) / tau)

# Compute the voltages
V_step = step_response(t_step)
V_nat = natural_response(t_nat)

# Plot both on one figure
plt.figure(figsize=(10,6))

# Convert time to microseconds and voltage to millivolts for readability
plt.plot(t_step * 1e6, V_step * 1e3, label='Step Response')
plt.plot(t_nat * 1e6, V_nat * 1e3, label='Natural Response')
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plt.xlabel('Time (µs)')
plt.ylabel('Voltage (mV)')
plt.title('Step and Natural Responses (� = 58 µs)')
plt.grid(True)
plt.legend()
plt.show()

4 Figure 4

[35]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# --- Load and Prepare Data ---
# Load the CSV file. Since your CSV appears to have 3 columns, we handle that.
data = pd.read_csv('songgun8.csv', header=None)

# Determine the number of columns and assign names accordingly.
if data.shape[1] == 2:

data.columns = ['Time', 'Voltage']
elif data.shape[1] == 3:

data.columns = ['Time', 'Voltage', 'Extra'] # 'Extra' column is ignored in␣
↪this analysis.
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else:
raise ValueError("Unexpected number of columns in CSV file.")

# Convert 'Time' and 'Voltage' columns to numeric values
data['Time'] = pd.to_numeric(data['Time'], errors='coerce')
data['Voltage'] = pd.to_numeric(data['Voltage'], errors='coerce')

# Convert time from microseconds to seconds
time = data['Time'].values # in microseconds
time_sec = time * 1e-6 # in seconds

# Convert voltage from mV to Volts
voltage = data['Voltage'].values * 1e-3 # in Volts

# --- Plot the Raw Damped Oscillation Signal ---
plt.figure(figsize=(10, 6))
plt.plot(time_sec, voltage, label='Inductor Voltage', color='blue')
plt.xlabel('Time (s)')
plt.ylabel('Voltage (V)')
plt.title('Damped Oscillator: Inductor Voltage vs Time')
plt.legend()
plt.grid(True)
plt.show()

# --- Estimating the Time Constant from the Envelope ---
# Given envelope peak points from your measurement:
# (5.1 �s, 263.25 mV) and (12.0 �s, 101.25 mV)
t1_us, t2_us = 5.1, 12.0 # in microseconds
V1_mV, V2_mV = 263.25, 101.25 # in millivolts

# Convert these to SI units:
t1 = t1_us * 1e-6 # seconds
t2 = t2_us * 1e-6 # seconds
V1 = V1_mV * 1e-3 # Volts
V2 = V2_mV * 1e-3 # Volts

# For an exponential envelope: V(t) = A * exp(-t/�)
# At t1: V1 = A * exp(-t1/�) and at t2: V2 = A * exp(-t2/�)
# Taking the ratio gives: V1/V2 = exp((t2-t1)/�)
# Solving for �:
tau_est = (t2 - t1) / np.log(V1/V2)
print("Estimated time constant (tau) from envelope peaks: {:.2e} s".

↪format(tau_est))

# --- Plotting the Estimated Exponential Envelope ---
# Reconstruct the envelope using the exponential decay:
# Using the value at t1, solve for A: A = V1 * exp(t1/�)
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A = V1 * np.exp(t1 / tau_est)

# Define the envelope function
def envelope(t):

return A * np.exp(-t / tau_est)

# Generate a fine time array for plotting the envelope
t_envelope = np.linspace(time_sec.min(), time_sec.max(), 500)
envelope_values = envelope(t_envelope)

plt.figure(figsize=(10, 6))
plt.plot(time_sec, voltage, label='Inductor Voltage', color='blue')
plt.plot(t_envelope, envelope_values, color='red', linestyle='--', linewidth=3,␣

↪label='Estimated Envelope')
plt.xlabel('Time (s)')
plt.ylabel('Voltage (V)')
plt.title('Damped Oscillator with Estimated Exponential Envelope')
plt.legend()
plt.grid(True)
plt.show()

Estimated time constant (tau) from envelope peaks: 7.22e-06 s
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5 Figure 5

[113]: import numpy as np
import matplotlib.pyplot as plt

# Measured data for the envelope (in SI units):
t1 = 5.1e-6 # 5.1 microseconds
V1 = 263.25e-3 # 263.25 mV in volts
t2 = 12.0e-6 # 12.0 microseconds
V2 = 101.25e-3 # 101.25 mV in volts

# Calculate the decay time constant tau using:
# tau = (t2 - t1) / ln(V1/V2)
tau = (t2 - t1) / np.log(V1/V2)
print("Calculated tau =", tau, "seconds") # Expected ~7.22e-6 s

# Calculate V0 from the first point: V1 = V0 * exp(-t1/tau)
V0 = V1 * np.exp(t1/tau)
print("Calculated V0 =", V0, "volts")

# Create a time array for the envelope, e.g., 0 to 20 microseconds
t = np.linspace(0, 20e-6, 200)

# Compute the ideal envelope:
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V_ideal = V0 * np.exp(-t/tau)

# --- Plot 1: Exponential Decay Envelope ---
plt.figure(figsize=(10,6))
plt.plot(t*1e6, V_ideal*1e3, 'r-', linewidth=2, label='Ideal Exponential Decay')
plt.plot(t1*1e6, V1*1e3, 'bo', markersize=8, label='Measured Peak 1')
plt.plot(t2*1e6, V2*1e3, 'go', markersize=8, label='Measured Peak 2')
plt.xlabel('Time (µs)')
plt.ylabel('Voltage (mV)')
plt.title('Exponential Decay Envelope')
plt.legend()
plt.grid(True)
plt.show()

# --- Plot 2: Linearized Plot ---
# Taking the natural logarithm:
ln_V = np.log(V_ideal) # ln(V(t)) = ln(V0) - t/tau

plt.figure(figsize=(10,6))
plt.plot(t*1e6, ln_V, 'b-', linewidth=2, label=r'$\ln(V(t)) = \ln(V_0)-t/\tau$')
plt.xlabel('Time (µs)')
plt.ylabel('ln(Voltage)')
plt.title('Linearized Exponential Decay (slope = -1/tau)')
plt.grid(True)
plt.legend()
plt.show()

# Print the expected linear parameters:
intercept_theoretical = np.log(V0)
slope_theoretical = -1.0 / tau
print("Theoretical intercept (ln(V0)) =", intercept_theoretical)
print("Theoretical slope (-1/tau) =", slope_theoretical)

Calculated tau = 7.221263581831692e-06 seconds
Calculated V0 = 0.5334427425578737 volts
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Theoretical intercept (ln(V0)) = -0.6284035381651645
Theoretical slope (-1/tau) = -138479.91956919365
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