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20bloolw78

March 4, 2025

1 Figure 1

[87]:  import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit

# —-—- Load the data (assumes CSV has columns: 'Time', 'Input', 'Output')
data = pd.read_csv('20BLoolw7.csv', header=None)
data.columns = ['Time', 'Input', 'Output']

# Convert columns to numeric (forcing any non-numeric values to Nal)
data['Time'] = pd.to_numeric(datal['Time'], errors='coerce')
datal['Input'] pd.to_numeric(datal'Input'], errors='coerce')
data['Output'] = pd.to_numeric(datal'Output'], errors='coerce')

# If your CSV is in seconds, use time as %s. If in microseconds, multiply by,
~le-6.

time_sec = datal['Time'] .values # in seconds (adjust if needed)

input_voltage = datal'Input'].values

output_voltage = datal['Output'].values

# ——— Plot Input and Output Signals to Identify the Natural Response Region ——-—
plt.figure(figsize=(10, 6))

plt.plot(time_sec, input_voltage, label='Input (Square Wave)')
plt.plot(time_sec, output_voltage, label='Output (Capacitor Voltage)')
plt.xlabel('Time (s)')

plt.ylabel('Voltage (V)')

plt.title('Input and Output Signals')

plt.legend ()

plt.grid(True)

plt.show()

# ——— Compute the Voltage Difference —---—
voltage_diff = input_voltage - output_voltage

# (Optional) Plot the woltage difference to see where it's positive



plt.figure(figsize=(10, 4))
plt.plot(time_sec, voltage diff, 'b.-')
plt.xlabel('Time (s)')
plt.ylabel('Voltage Diff (V_in - V_out)')
plt.title('Voltage Difference vs. Time')
plt.grid(True)

plt.show()

# ______________________________________________________________________
# STEP 1: Identify the approxzimate time the natural response starts.

# For example, from my plot, you might see the input goes low

# at t ~ 0.0056 s. We'll call this 'step_time'.

# ______________________________________________________________________

# ______________________________________________________________________

# STEP 2: Restrict to a short window after 'step_time' for the natural decay.
# For instance, let's look 0 to 100 us after step_time.

# ______________________________________________________________________

t_min = step_time
step_time + 100e-6 # 100 us after step_time

o+
8
)
™
Il

mask_time = (time_sec >= t_min) & (time_sec <= t_max)
mask_diff (voltage_diff > 0)

# Combine the masks
mask = mask_time & mask_diff

time_sec_valid = time_sec[mask]
voltage_diff_valid = voltage_diff [mask]

# Check <f we have wvalid points
if len(time_sec_valid) ==
raise ValueError("No valid data points found in the specified window.
~Adjust step_time or t_max.")

1n_diff_valid = np.log(voltage_diff_valid)

# (Optional) Shift time so that the natural response starts at t=0
# This step makes the fit more intuitive (t=0 => start of discharge).
time_sec_valid_shifted = time_sec_valid - step_time

# —--— Plot the Logarithm of the Voltage Difference —---
plt.figure(figsize=(10, 6))



plt.plot(time_sec_valid_shifted, 1n_diff_valid, 'bo', label='Data (ln(Input -
<0utput)) ')

plt.xlabel('Time after Step (s)')

plt.ylabel('ln(Voltage Difference)')

plt.title('Logarithm of Voltage Difference vs Time (Natural Response)')

plt.grid(True)

plt.legend ()

plt.show()

# ——— Define a Linear Function for Fitting: ln_diff = In(V0) - t/
def linear_func(t, intercept, slope):
return intercept + slope * t

# ——— Fit the Linear Model to the Valid Data —--

popt, pcov = curve_fit(linear_func, time_sec_valid_shifted, 1n_diff_ valid)
intercept_fit, slope_fit = popt

intercept_err, slope_err = np.sqrt(np.diag(pcov))

# —-—— Plot the Best-Fit Line ——-

t_fit = np.linspace(time_sec_valid_shifted.min(), time_sec_valid_shifted.max(),
+200)

In_fit = linear_func(t_fit, intercept_fit, slope_fit)

plt.figure(figsize=(10, 6))

plt.plot(time_sec_valid_shifted, 1n_diff_valid, 'bo', label='Data (1ln(Input -
<0utput)) ")

plt.plot(t_fit, 1n_fit, 'r--', linewidth=3, label='Best-fit line')

plt.xlabel('Time after Step (s)')

plt.ylabel('1ln(Voltage Difference)')

plt.title('Linear Fit of 1n(Voltage Difference) vs Time (Natural Response)')

plt.grid(True)

plt.legend ()

plt.show()
# —-—- Calculate the Time Constant: slope = -1/
tau_measured = -1.0 / slope_fit

tau_uncertainty = tau_measured * (slope_err / abs(slope_fit))

print(f"Intercept: {intercept_fit:.2e} + {intercept_err:.2el}")

print (£"Slope: {slope_fit:.2e} + {slope_err:.2e}")

print (f"Measured time constant (tau): {tau_measured:.2e} s + {tau_uncertainty:.
~2e} s")
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Measured time constant (tau): 6.76e-05 s = 2.63e-07 s

2 Figure 2
[99]: import numpy as np
import matplotlib.pyplot as plt

from scipy.optimize import curve_fit

# Given information (in volts):

Vi_step = -0.94125  # Initial voltage of step response (-941.25 mV)
Vf_step = 0.91575 # Final wvoltage of step response (+915.75 mV)
tau_true = 58e-6 # True time constant = 58 microseconds

# The total wvoltage change for the step ts:
VO = Vf_step - Vi_step # Should be about 1.857 V

# Create a time wvector for the step response from O to 500 microseconds.
t_step = np.linspace(0, 500e-6, 500) # time in seconds

# Define the step response function:
# V(t) = VFf + (Vi - VF)*exp(-t/taw)
def step_response(t, tau):
return Vf_step + (Vi_step - Vf_step) * np.exp(-t / tau)

# Compute the step response using the true tau (for simulation)
V_step = step_response(t_step, tau_true)

# For the linearization, we use the fact that for an RC charging process:
# Vf - V(t) = VO * exp(-t/tau)

# Taking the mnatural logarithm gives:

# In(Vf - V(t)) = in(V0) - t/tau

# We'll compute ln(Vf - V(t)) from our simulated data.

diff_step = Vf_step - V_step

1n_diff_step = np.log(diff_step)

# Now we perform a linear fit to ln_diff_step vs. t
def linear_func(t, intercept, slope):
return intercept + slope * t

popt, pcov = curve_fit(linear_func, t_step, 1ln_diff_step)
intercept_fit, slope_fit = popt
intercept_err, slope_err = np.sqrt(np.diag(pcov))

# Calculate the time constant from the slope.

# The theoretical relation is: slope = -1/tau, so:
tau_fitted = -1.0 / slope_fit

tau_fitted_err = tau_fitted * (slope_err / abs(slope_fit))



# Plot the original step response

plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.

figure(figsize=(10,6))

plot(t_step * le6, V_step * 1le3, 'b-', label='Step Response')
xlabel('Time (ps)')

ylabel('Voltage (mV)')

title('Step Response (Vi = -941.25 mV, Vf = +915.75 mV)"')
grid(True)

legend ()

show ()

# Plot the logarithm of the woltage difference along with the best-fit line

plt.
plt.

figure(figsize=(10,6))
plot(t_step * le6, 1ln_diff_step, 'bo', label='Data: 1n(Vf - V(t))')

t_fit = np.linspace(t_step.min(), t_step.max(), 200)

plt.

plt.
plt.
.title('Linearized Step Response: 1n(Vf - V(t)) vs. Time')
plt.
plt.
plt.

plt

plot(t_fit * 1e6, linear_func(t_fit, intercept_fit, slope_fit),
'r—--', linewidth=2, label='Best-fit line')

xlabel('Time (ps)')

ylabel('In(VE - V(t))"')

grid(True)
legend ()
show ()

# Print the linear fit parameters and the computed tau

print("Fitted linear parameters:")

print(" Y-intercept: {:.2e} = {:.2e}".format(intercept_fit, intercept_err))

print(" Slope: {:.2e} £ {:.2e}".format(slope_fit, slope_err))

print("Calculated time constant (tau): {:.2e} s + {:.2e} s".format(tau_fitted,
~tau _fitted_err))



Step Response (Vi =-941.25 mV, Vf = +915.75 mV)
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Slope: -1.72e+04 + 6.08e-12
Calculated time constant (tau): 5.80e-05 s + 2.04e-20 s

3 Figure 3

[95]: import numpy as np
import matplotlib.pyplot as plt

# Given information (in volts):

# Step response: tnitial = -941.25 mV, final = +915.75 mV

# Natural response: initial = +915.75 mV, final = -941.25 mV
# Both have a measured tau = 58 microseconds

Vi_step = -0.94125  # -941.25 mV in wvolts
Vi_step = 0.91575 # 915.75 mV in wolts
Vi_nat = 0.91575 # 915.75 mV in wvolts
Vf_nat = -0.94125 # -941.25 mV in volts
tau = 58e-6 # 58 microseconds in seconds

# Time arrays for plotting:

# 1) Step response from t=0 to 500 microseconds

# 2) Natural response from t=500 microseconds to 1000 microseconds
t_step = np.linspace(0, 500e-6, 500) # 0 + 500 s

t_nat = np.linspace(500e-6, 1000e-6, 500) # 500 - 800 s

# Define the exponential step response:
# V_step(t) = Vf_step + (Vi_step - Vf_step)*exp(-t/tau)
def step_response(t):

return Vf_step + (Vi_step - Vf_step)*np.exp(-t / tau)

# Define the natural (discharge) response:
# V_nat(t) = Vf_nat + (Vi_nat - Vf_nat)*exp(-(t - t0)/tau), for t >= t0=500 s
def natural_response(t):

t0 = 500e-6 # The discharge starts at 500 s

return Vf_nat + (Vi_nat - Vf_nat)#*np.exp(-(t - t0) / tauw)

# Compute the woltages
V_step = step_response(t_step)
V_nat natural_response(t_nat)

# Plot both on one figure
plt.figure(figsize=(10,6))

# Convert time to microseconds and voltage to millivolts for readability
plt.plot(t_step * 1le6, V_step * 1le3, label='Step Response')
plt.plot(t_nat * le6, V_nat * 1le3, label='Natural Response')



[35]:

plt.xlabel('Time (ps)')

plt.ylabel('Voltage (mV)')

plt.title('Step and Natural Responses ( = 58 ps)')
plt.grid(True)

plt.legend ()

plt.show()

Step and Natural Responses (T = 58 us)
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4 Figure 4

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# --- Load and Prepare Data —---
# Load the CSV file. Since your CSV appears to have 3 columns, we handle that.
data = pd.read_csv('songgun8.csv', header=None)

# Determine the number of columns and assign names accordingly.
if data.shape[l] ==
data.columns = ['Time', 'Voltage']
elif data.shapel[l] ==
data.columns = ['Time', 'Voltage', 'Extra'l # 'Eztra’ column is ignored im,
~this analysts.

10



else:
raise ValueError ("Unexpected number of columns in CSV file.")

# Convert 'Time' and 'Voltage' columns to numeric values
data['Time'] = pd.to_numeric(datal['Time'], errors='coerce')
data['Voltage'] = pd.to_numeric(datal['Voltage'], errors='coerce')

# Convert time from microseconds to seconds
time = datal['Time'].values # in microseconds
time_sec = time * le-6 # in seconds

# Convert woltage from mV to Volts
voltage = datal['Voltage'].values * le-3 # 4n Volts

# ——— Plot the Raw Damped Oscillation Signal ——-
plt.figure(figsize=(10, 6))

plt.plot(time_sec, voltage, label='Inductor Voltage', color='blue')
plt.xlabel('Time (s)')

plt.ylabel('Voltage (V)')

plt.title('Damped Oscillator: Inductor Voltage vs Time')
plt.legend()

plt.grid(True)

plt.show()

# ——— Estimating the Time Constant from the Envelope ——-—
# Given envelope peak points from your measurement:

# (5.1 s, 263.25 mV) and (12.0 s, 101.25 mV)

tl us, t2_ us = 5.1, 12.0 # im microseconds
Vi_mV, V2_mV = 263.25, 101.25 # in millivolts

# Convert these to SI units:

tl = tl_us * le-6 # seconds
t2 = t2_us *x le-6 # seconds
Vi = V1l mV * 1e-3 # Volts
V2 = V2_mV * 1e-3 # Volts

# For an ezponential envelope: V(t) = A * exp(-t/)

# At t1: V1 = A * exp(-t1/) and at t2: V2 = A * exp(-t2/)

# Taking the ratio gives: V1/V2 = exp((t2-t1)/)

# Solving for

tau_est = (t2 - t1) / np.log(V1/V2)

print ("Estimated time constant (tau) from envelope peaks: {:.2e} s".
~format (tau_est))

# —-—— Plotting the Estimated Exzponential Envelope ——-

# Reconstruct the envelope using the exponential decay:
# Using the value at t1, solve for A: A = V1 * exp(t1/)

11



A = V1 * np.exp(tl / tau_est)

# Define the envelope function
def envelope(t):
return A * np.exp(-t / tau_est)

# Generate a fine time array for plotting the envelope
t_envelope = np.linspace(time_sec.min(), time_sec.max(), 500)
envelope_values = envelope(t_envelope)

plt.figure(figsize=(10, 6))

plt.plot(time_sec, voltage, label='Inductor Voltage', color='blue')

plt.plot(t_envelope, envelope_values, color='red', linestyle='--', linewidth=3,,
~label='Estimated Envelope')

plt.xlabel('Time (s)')

plt.ylabel('Voltage (V)')

plt.title('Damped Oscillator with Estimated Exponential Envelope')

plt.legend ()

plt.grid(True)

plt.show()

Damped Oscillator: Inductor Voltage vs Time
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Estimated time constant (tau) from envelope peaks: 7.22e-06 s
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Damped Oscillator with Estimated Exponential Envelope
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5 Figure 5

[113]: import numpy as np
import matplotlib.pyplot as plt

# Measured data for the envelope (in SI units):

tl = 5.1e-6 # 5.1 microseconds

V1 = 263.25e-3 # 263.25 mV in volts
t2 = 12.0e-6 # 12.0 microseconds
V2 = 101.25e-3 # 101.25 mV in volts

# Calculate the decay time constant tau using:

# tau = (t2 - t1) / n(V1/V2)

tau = (t2 - t1) / np.log(V1i/V2)

print("Calculated tau =", tau, "seconds") # Ezpected ~7.22e-6 s

# Calculate VO from the first point: VI = VO * exp(-t1/tau)
VO = V1 * np.exp(tl/tau)
print("Calculated VO =", VO, "volts")

# Create a time array for the envelope, e.g., 0 to 20 microseconds
t = np.linspace(0, 20e-6, 200)

# Compute the ideal envelope:

13



V_ideal = VO * np.exp(-t/tau)

# --— Plot 1: Ezponential Decay Envelope ---
plt.figure(figsize=(10,6))

plt.plot(txle6, V_ideal*1e3, 'r-', linewidth=2, label='Ideal Exponential Decay')
plt.plot(ti*le6, Vixle3, 'bo', markersize=8, label='Measured Peak 1')
plt.plot(t2*le6, V2*1le3, 'go', markersize=8, label='Measured Peak 2')
plt.xlabel('Time (ps)')

plt.ylabel('Voltage (mV)')

plt.title('Exponential Decay Envelope')

plt.legend ()

plt.grid(True)

plt.show()

# --—— Plot 2: Linearized Plot —-—-
# Taking the natural logarithm:
1n_V = np.log(V_ideal) # In(V(t)) = ln(V0) - t/tau

plt.figure(figsize=(10,6))

plt.plot(t*le6, 1n_V, 'b-', linewidth=2, label=r'$\1n(V(t)) = \1n(V_0)-t/\tau$')
plt.xlabel('Time (ps)')

plt.ylabel('1ln(Voltage)')

plt.title('Linearized Exponential Decay (slope = -1/tau)')

plt.grid(True)

plt.legend ()

plt.show()

# Print the expected linear parameters:

intercept_theoretical = np.log(V0)

slope_theoretical = -1.0 / tau

print ("Theoretical intercept (1n(V0)) =", intercept_theoretical)
print ("Theoretical slope (-1/tau) =", slope_theoretical)

Calculated tau = 7.221263581831692e-06 seconds
Calculated VO = 0.5334427425578737 volts
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