Week_ 1] (d ot foto

(3/4

L wmade an AL ped oA ket

An o RE gy b 1 Wy« eyt
< La/'/'%f Vaf} € r A alrain
4}5 Ay dy Vee) Q,j/cxwa‘/ s
VYR
£ ~RrC
[AJA?I I '(’L(_';?
Fo 3~ (Q=CV

dt
dv Vo -le)
- R C
wfe 2/(07; a
ooy -Y
= R
ve) .
AVASR J 4/
0/_\/’ - —
" V) e
— - (4;) ;_f.
VAR =

E/ /LA_/-"""Q/(Ve §W§ e

d/_ _M o oz adong vy
T RC G 1T &é}

\/[—l',);Vg gt/k,c 4_\1

- R C
1=/ COXIg" v 60 < (Y™ 2 Sy 5

.I Mers Moc($§ /U\ ' M/LIZJ\ s 2 /'-)' 7

Voo vie)- Vaét//ac
In [VCA—V(c))f /é“(i/a)' /%C

:I,P(L /&v‘L‘ /&(VU.M/-V&)) v e é}
v 5./\{1(0/ bave a <4égh/ Aize w/
5 lap< "(//CC’,"% L Lsbp

—

Go '{‘0 %Me i n

w‘y F)»H«aw mc‘e

/¢(7, pl(zr(fos a T of 47/.(; and
o 5(09?1‘% ‘14500‘314%1([4,@«)«%/\

N \(rfi ckaﬁr\g H\v— 14\%& VQMC/ fﬁw?

0-00065¢ “’0.06055 & OOk ~ Ol
bt ii’gw@ e A wese

[
Seap® T8

Va(ue.
T4+ é"é PRLTS

/U% /(*-‘L me F“’“ usn4- the difa P"’“ﬁ

dscumentd 1n lah C“’/’ csv]%:,/HOFcM)/ Hhg

Ne L.Jn” Ve w$ \gé/,‘s &.A&é & dape a,()

F@w/& ,2/1 pr 40?7/7 bur#\ ths /')/Jf

L /m CZ, J’a Ac\lj ws'lL H\L p&ﬂme}% A e
‘u\,\(; 'Jo hen 'lke S{’Q,YJ oud m‘/ara// /’65}”"56—5
he ", o*“exwise e egl«a'ﬁm docsbt Afand 5
w sl [de* o nwa hess

I'p CJ: @G p& e “I/) 92/ (Ié,w/wﬂtl l’i
i (ab, .{&e(_? Qﬂa‘foﬁﬁiféﬁéﬂ

147/ ol dervate s
Well T g ol onchs, I fooe &

t

resel of D e aﬂﬁgﬁwﬁ his way be
dune 'lw 4{: reSiay S, Jmna@ é%}
and the C&ra,a'-l'q—/é Walesnnce o L V“&M
bove o wessure exoct cﬂ-faa"[amcc ond

Y‘esj«;{‘cwta W the w«lw_rg + Ve ol Se rd pee St

On Hhe et m%l m"(descibe Lobod .
Ly et 5"V P A

3/3 O1:60 4

/4 P IeoAM

i);()/(r/&ﬁ,jel o "HM o8V :]Qje »c{;

uet AL /iﬁ% “tze

d
Jﬁl/ b((c + bx)azuL =0
U, ce)- U, "

€% - tosfuc)+ csarwt)

Bl . >
uc(t): é,/z: (Momé Lzut’r ddmﬁﬂufy
L?’Mﬁa’(Ca’ﬂcé%‘nv\
MO>M£ (0/ (/{C(G)_zc

u (1) —‘5/}(6[/’ 45)
(l))
U duy kel)

U, celUo e—’/[/wwﬂ% ’é . (wt}

& - ==

W
NS - _pt

k\/ N

7
I-cu,
U, Pt
'@6/ Sh(Wtr7T)

7"& Jeca. ﬁg 5 /ﬁée_ o~ Med ap’[/déxj
N

S L ‘Qw‘ e T a e cace

M e

Iﬂ A CLC&Y 2 6’5(74-1&64,(,4[,\0\ /I—Le, ,(V\ vahae
5 (o

A ée aurSe we /@/ﬂ,@({ %«)-
M ﬁ? YS%/Q; ches e/ftéc/l&/ [Crooin }

WL; ?‘ﬁé\fﬂug e % wudh pev

Lt tugpry ifh y mecdele Gogise -
Qlcsane_g ?/ O/bga,/r,ajav\s wJ(AHJIAo/» h
3— {"‘D‘L’{(_Z w«aj’ mesSuy e yd\./ /C A/\J

("’)"’z‘f neyt ’fmcj i fhan "eaxl/” ’7d ’ID AV
J‘ka F(’\g”"‘& M-'Jf_ T aks {lwk a PCQ SLW/J be
hei. Do & Lfea.JLcoy.;/ fo reduce ‘571’/7 [pfa_c(ﬁﬂte
wl l)\éo%/\c’, 1.ﬁl Aac/ A{?‘A‘ﬁ/ (éjo(wé*y Asd(4%76'5/
I Aru@bc LAC;L)W@@« el] wa‘ﬂ+;““’L(a
MSe e pat fne So 4w preas 7
&t e @%WF 91& be }VL‘{’ /’WF/Z- / W

fnd 30 THY

20bloolw78

March 4, 2025

1 Figure 1

[87]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit

—-—- Load the data (assumes CSV has columns: 'Time', 'Input', 'Output')
data = pd.read_csv('20BLoolw7.csv', header=None)
data.columns = ['Time', 'Input', 'Output']

Convert columns to numeric (forcing any non-numeric values to Nal)
data['Time'] = pd.to_numeric(datal['Time'], errors='coerce')
datal['Input'] pd.to_numeric(datal'Input'], errors='coerce')
data['Output'] = pd.to_numeric(datal'Output'], errors='coerce')

If your CSV is in seconds, use time as %s. If in microseconds, multiply by,
~le-6.

time_sec = datal['Time'] .values # in seconds (adjust if needed)

input_voltage = datal'Input'].values

output_voltage = datal['Output'].values

——— Plot Input and Output Signals to Identify the Natural Response Region ——-—
plt.figure(figsize=(10, 6))

plt.plot(time_sec, input_voltage, label='Input (Square Wave)')
plt.plot(time_sec, output_voltage, label='Output (Capacitor Voltage)')
plt.xlabel('Time (s)')

plt.ylabel('Voltage (V)')

plt.title('Input and Output Signals')

plt.legend ()

plt.grid(True)

plt.show()

——— Compute the Voltage Difference —---—
voltage_diff = input_voltage - output_voltage

(Optional) Plot the woltage difference to see where it's positive

plt.figure(figsize=(10, 4))
plt.plot(time_sec, voltage diff, 'b.-')
plt.xlabel('Time (s)')
plt.ylabel('Voltage Diff (V_in - V_out)')
plt.title('Voltage Difference vs. Time')
plt.grid(True)

plt.show()

__
STEP 1: Identify the approxzimate time the natural response starts.

For example, from my plot, you might see the input goes low

at t ~ 0.0056 s. We'll call this 'step_time'.

__

__

STEP 2: Restrict to a short window after 'step_time' for the natural decay.
For instance, let's look 0 to 100 us after step_time.

__

t_min = step_time
step_time + 100e-6 # 100 us after step_time

o+
8
)
™
Il

mask_time = (time_sec >= t_min) & (time_sec <= t_max)
mask_diff (voltage_diff > 0)

Combine the masks
mask = mask_time & mask_diff

time_sec_valid = time_sec[mask]
voltage_diff_valid = voltage_diff [mask]

Check <f we have wvalid points
if len(time_sec_valid) ==
raise ValueError("No valid data points found in the specified window.
~Adjust step_time or t_max.")

1n_diff_valid = np.log(voltage_diff_valid)

(Optional) Shift time so that the natural response starts at t=0
This step makes the fit more intuitive (t=0 => start of discharge).
time_sec_valid_shifted = time_sec_valid - step_time

—--— Plot the Logarithm of the Voltage Difference —---
plt.figure(figsize=(10, 6))

plt.plot(time_sec_valid_shifted, 1n_diff_valid, 'bo', label='Data (ln(Input -
<0utput)) ')

plt.xlabel('Time after Step (s)')

plt.ylabel('ln(Voltage Difference)')

plt.title('Logarithm of Voltage Difference vs Time (Natural Response)')

plt.grid(True)

plt.legend ()

plt.show()

——— Define a Linear Function for Fitting: ln_diff = In(V0) - t/
def linear_func(t, intercept, slope):
return intercept + slope * t

——— Fit the Linear Model to the Valid Data —--

popt, pcov = curve_fit(linear_func, time_sec_valid_shifted, 1n_diff_ valid)
intercept_fit, slope_fit = popt

intercept_err, slope_err = np.sqrt(np.diag(pcov))

—-—— Plot the Best-Fit Line ——-

t_fit = np.linspace(time_sec_valid_shifted.min(), time_sec_valid_shifted.max(),
+200)

In_fit = linear_func(t_fit, intercept_fit, slope_fit)

plt.figure(figsize=(10, 6))

plt.plot(time_sec_valid_shifted, 1n_diff_valid, 'bo', label='Data (1ln(Input -
<0utput)) ")

plt.plot(t_fit, 1n_fit, 'r--', linewidth=3, label='Best-fit line')

plt.xlabel('Time after Step (s)')

plt.ylabel('1ln(Voltage Difference)')

plt.title('Linear Fit of 1n(Voltage Difference) vs Time (Natural Response)')

plt.grid(True)

plt.legend ()

plt.show()
—-—- Calculate the Time Constant: slope = -1/
tau_measured = -1.0 / slope_fit

tau_uncertainty = tau_measured * (slope_err / abs(slope_fit))

print(f"Intercept: {intercept_fit:.2e} + {intercept_err:.2el}")

print (£"Slope: {slope_fit:.2e} + {slope_err:.2e}")

print (f"Measured time constant (tau): {tau_measured:.2e} s + {tau_uncertainty:.
~2e} s")

Input and Output Signals

104 Wbt i — Input (Square Wave) A
’ — Qutput (Capacitor Voltage)
0.5 A
)
L 0.0
Ji
g
—0.5 A
—1.07 VAL oo D
T T T T T
0.0004 0.0006 0.0008 0.0010 0.0012
Time (s)
Voltage Difference vs. Time
2.0 1
1.5 1
] i
3, 10
=
! 0.5 A
£
I
2 0.0
=
a
v —0.5
o
Ji
§ -1.0 1
—=1.5 A
_2-0 L T T T T T
0.0004 0.0006 0.0008 0.0010 0.0012
Time (s)

In(Voltage Difference)

In(Voltage Difference)

Logarithm of Voltage Difference vs Time (Natural Response)

® Data (In{Input - Output))
0.6
0.4
0.2 1
0.0 A
—0.2 1 M
—0.4 A 1"‘."b
s}
o
Wy
~0.6 "u‘\".
[l
¢ “:"b
0.8 -
[]
T T T T T T
0.00000 0.00002 0.00004 0.00006 0.00008 0.00010
Time after Step (s)
Linear Fit of In(\Voltage Difference) vs Time (Natural Response)
® Data (In({Input - Output))
0.6 1 == = Best-fit line
0.4 1
0.2 1
0.0 1
_02 -
_04 -
_06 -
_08 -
T T T T T T
0.00000 0.00002 0.00004 0.00006 0.00008 0.00010

Intercept: 6.43e-01 + 3.32e-03

Slope:

-1.48e+04 + 5.75e+01

Time after Step (s)

Measured time constant (tau): 6.76e-05 s = 2.63e-07 s

2 Figure 2
[99]: import numpy as np
import matplotlib.pyplot as plt

from scipy.optimize import curve_fit

Given information (in volts):

Vi_step = -0.94125 # Initial voltage of step response (-941.25 mV)
Vf_step = 0.91575 # Final wvoltage of step response (+915.75 mV)
tau_true = 58e-6 # True time constant = 58 microseconds

The total wvoltage change for the step ts:
VO = Vf_step - Vi_step # Should be about 1.857 V

Create a time wvector for the step response from O to 500 microseconds.
t_step = np.linspace(0, 500e-6, 500) # time in seconds

Define the step response function:
V(t) = VFf + (Vi - VF)*exp(-t/taw)
def step_response(t, tau):
return Vf_step + (Vi_step - Vf_step) * np.exp(-t / tau)

Compute the step response using the true tau (for simulation)
V_step = step_response(t_step, tau_true)

For the linearization, we use the fact that for an RC charging process:
Vf - V(t) = VO * exp(-t/tau)

Taking the mnatural logarithm gives:

In(Vf - V(t)) = in(V0) - t/tau

We'll compute ln(Vf - V(t)) from our simulated data.

diff_step = Vf_step - V_step

1n_diff_step = np.log(diff_step)

Now we perform a linear fit to ln_diff_step vs. t
def linear_func(t, intercept, slope):
return intercept + slope * t

popt, pcov = curve_fit(linear_func, t_step, 1ln_diff_step)
intercept_fit, slope_fit = popt
intercept_err, slope_err = np.sqrt(np.diag(pcov))

Calculate the time constant from the slope.

The theoretical relation is: slope = -1/tau, so:
tau_fitted = -1.0 / slope_fit

tau_fitted_err = tau_fitted * (slope_err / abs(slope_fit))

Plot the original step response

plt.
plt.
plt.
plt.
plt.
plt.
plt.
plt.

figure(figsize=(10,6))

plot(t_step * le6, V_step * 1le3, 'b-', label='Step Response')
xlabel('Time (ps)')

ylabel('Voltage (mV)')

title('Step Response (Vi = -941.25 mV, Vf = +915.75 mV)"')
grid(True)

legend ()

show ()

Plot the logarithm of the woltage difference along with the best-fit line

plt.
plt.

figure(figsize=(10,6))
plot(t_step * le6, 1ln_diff_step, 'bo', label='Data: 1n(Vf - V(t))')

t_fit = np.linspace(t_step.min(), t_step.max(), 200)

plt.

plt.
plt.
.title('Linearized Step Response: 1n(Vf - V(t)) vs. Time')
plt.
plt.
plt.

plt

plot(t_fit * 1e6, linear_func(t_fit, intercept_fit, slope_fit),
'r—--', linewidth=2, label='Best-fit line')

xlabel('Time (ps)')

ylabel('In(VE - V(t))"')

grid(True)
legend ()
show ()

Print the linear fit parameters and the computed tau

print("Fitted linear parameters:")

print(" Y-intercept: {:.2e} = {:.2e}".format(intercept_fit, intercept_err))

print(" Slope: {:.2e} £ {:.2e}".format(slope_fit, slope_err))

print("Calculated time constant (tau): {:.2e} s + {:.2e} s".format(tau_fitted,
~tau _fitted_err))

Step Response (Vi =-941.25 mV, Vf = +915.75 mV)

1000
—— Step Response

750 4

500 4

250 1

Voltage (mV)

—250 ~

=500 A

=750 7

—1000 A

T T T T T
0 100 200 300 400 500
Time (ps)

Linearized Step Response: In(Vf - V(t)) vs. Time

@® Data: In(vf - V(1))
— = Best-fit line

In(Vf - V(t))

T T T T T
0 100 200 300 400 500
Time (ps)

Fitted linear parameters:
Y-intercept: 6.19e-01 + 1.76e-15

Slope: -1.72e+04 + 6.08e-12
Calculated time constant (tau): 5.80e-05 s + 2.04e-20 s

3 Figure 3

[95]: import numpy as np
import matplotlib.pyplot as plt

Given information (in volts):

Step response: tnitial = -941.25 mV, final = +915.75 mV

Natural response: initial = +915.75 mV, final = -941.25 mV
Both have a measured tau = 58 microseconds

Vi_step = -0.94125 # -941.25 mV in wvolts
Vi_step = 0.91575 # 915.75 mV in wolts
Vi_nat = 0.91575 # 915.75 mV in wvolts
Vf_nat = -0.94125 # -941.25 mV in volts
tau = 58e-6 # 58 microseconds in seconds

Time arrays for plotting:

1) Step response from t=0 to 500 microseconds

2) Natural response from t=500 microseconds to 1000 microseconds
t_step = np.linspace(0, 500e-6, 500) # 0 + 500 s

t_nat = np.linspace(500e-6, 1000e-6, 500) # 500 - 800 s

Define the exponential step response:
V_step(t) = Vf_step + (Vi_step - Vf_step)*exp(-t/tau)
def step_response(t):

return Vf_step + (Vi_step - Vf_step)*np.exp(-t / tau)

Define the natural (discharge) response:
V_nat(t) = Vf_nat + (Vi_nat - Vf_nat)*exp(-(t - t0)/tau), for t >= t0=500 s
def natural_response(t):

t0 = 500e-6 # The discharge starts at 500 s

return Vf_nat + (Vi_nat - Vf_nat)#*np.exp(-(t - t0) / tauw)

Compute the woltages
V_step = step_response(t_step)
V_nat natural_response(t_nat)

Plot both on one figure
plt.figure(figsize=(10,6))

Convert time to microseconds and voltage to millivolts for readability
plt.plot(t_step * 1le6, V_step * 1le3, label='Step Response')
plt.plot(t_nat * le6, V_nat * 1le3, label='Natural Response')

[35]:

plt.xlabel('Time (ps)')

plt.ylabel('Voltage (mV)')

plt.title('Step and Natural Responses (= 58 ps)')
plt.grid(True)

plt.legend ()

plt.show()

Step and Natural Responses (T = 58 us)

1000 A
—— Step Response

—— Natural Response

750 4

500 4

250

Voltage (mV)

—250 ~

—500 ~

=750 7

—1000 A

T T T T T
0 200 400 600 800 1000
Time (ps)

4 Figure 4

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

--- Load and Prepare Data —---
Load the CSV file. Since your CSV appears to have 3 columns, we handle that.
data = pd.read_csv('songgun8.csv', header=None)

Determine the number of columns and assign names accordingly.
if data.shape[l] ==
data.columns = ['Time', 'Voltage']
elif data.shapel[l] ==
data.columns = ['Time', 'Voltage', 'Extra'l # 'Eztra’ column is ignored im,
~this analysts.

10

else:
raise ValueError ("Unexpected number of columns in CSV file.")

Convert 'Time' and 'Voltage' columns to numeric values
data['Time'] = pd.to_numeric(datal['Time'], errors='coerce')
data['Voltage'] = pd.to_numeric(datal['Voltage'], errors='coerce')

Convert time from microseconds to seconds
time = datal['Time'].values # in microseconds
time_sec = time * le-6 # in seconds

Convert woltage from mV to Volts
voltage = datal['Voltage'].values * le-3 # 4n Volts

——— Plot the Raw Damped Oscillation Signal ——-
plt.figure(figsize=(10, 6))

plt.plot(time_sec, voltage, label='Inductor Voltage', color='blue')
plt.xlabel('Time (s)')

plt.ylabel('Voltage (V)')

plt.title('Damped Oscillator: Inductor Voltage vs Time')
plt.legend()

plt.grid(True)

plt.show()

——— Estimating the Time Constant from the Envelope ——-—
Given envelope peak points from your measurement:

(5.1 s, 263.25 mV) and (12.0 s, 101.25 mV)

tl us, t2_ us = 5.1, 12.0 # im microseconds
Vi_mV, V2_mV = 263.25, 101.25 # in millivolts

Convert these to SI units:

tl = tl_us * le-6 # seconds
t2 = t2_us *x le-6 # seconds
Vi = V1l mV * 1e-3 # Volts
V2 = V2_mV * 1e-3 # Volts

For an ezponential envelope: V(t) = A * exp(-t/)

At t1: V1 = A * exp(-t1/) and at t2: V2 = A * exp(-t2/)

Taking the ratio gives: V1/V2 = exp((t2-t1)/)

Solving for

tau_est = (t2 - t1) / np.log(V1/V2)

print ("Estimated time constant (tau) from envelope peaks: {:.2e} s".
~format (tau_est))

—-—— Plotting the Estimated Exzponential Envelope ——-

Reconstruct the envelope using the exponential decay:
Using the value at t1, solve for A: A = V1 * exp(t1/)

11

A = V1 * np.exp(tl / tau_est)

Define the envelope function
def envelope(t):
return A * np.exp(-t / tau_est)

Generate a fine time array for plotting the envelope
t_envelope = np.linspace(time_sec.min(), time_sec.max(), 500)
envelope_values = envelope(t_envelope)

plt.figure(figsize=(10, 6))

plt.plot(time_sec, voltage, label='Inductor Voltage', color='blue')

plt.plot(t_envelope, envelope_values, color='red', linestyle='--', linewidth=3,,
~label='Estimated Envelope')

plt.xlabel('Time (s)')

plt.ylabel('Voltage (V)')

plt.title('Damped Oscillator with Estimated Exponential Envelope')

plt.legend ()

plt.grid(True)

plt.show()

Damped Oscillator: Inductor Voltage vs Time

0.0003 A

— Inductor Voltage

0.0002

0.0001

0.0000 -

—0.0001 ~

Voltage (V)

—0.0002 A

—0.0003 ~

—0.0004 ~

-2 -1 4] 1 2
Time (s) le—11

Estimated time constant (tau) from envelope peaks: 7.22e-06 s

12

Damped Oscillator with Estimated Exponential Envelope

0.0003 H
— Inductor Voltage

== = Estimated Envelope

0.0002

0.0001

0.0000 -

—0.0001 ~

Voltage (V)

—0.0002 A

—0.0003 ~

—0.0004 ~

-2 -1 0 1 2
Time (s) le—11

5 Figure 5

[113]: import numpy as np
import matplotlib.pyplot as plt

Measured data for the envelope (in SI units):

tl = 5.1e-6 # 5.1 microseconds

V1 = 263.25e-3 # 263.25 mV in volts
t2 = 12.0e-6 # 12.0 microseconds
V2 = 101.25e-3 # 101.25 mV in volts

Calculate the decay time constant tau using:

tau = (t2 - t1) / n(V1/V2)

tau = (t2 - t1) / np.log(V1i/V2)

print("Calculated tau =", tau, "seconds") # Ezpected ~7.22e-6 s

Calculate VO from the first point: VI = VO * exp(-t1/tau)
VO = V1 * np.exp(tl/tau)
print("Calculated VO =", VO, "volts")

Create a time array for the envelope, e.g., 0 to 20 microseconds
t = np.linspace(0, 20e-6, 200)

Compute the ideal envelope:

13

V_ideal = VO * np.exp(-t/tau)

--— Plot 1: Ezponential Decay Envelope ---
plt.figure(figsize=(10,6))

plt.plot(txle6, V_ideal*1e3, 'r-', linewidth=2, label='Ideal Exponential Decay')
plt.plot(ti*le6, Vixle3, 'bo', markersize=8, label='Measured Peak 1')
plt.plot(t2*le6, V2*1le3, 'go', markersize=8, label='Measured Peak 2')
plt.xlabel('Time (ps)')

plt.ylabel('Voltage (mV)')

plt.title('Exponential Decay Envelope')

plt.legend ()

plt.grid(True)

plt.show()

--—— Plot 2: Linearized Plot —-—-
Taking the natural logarithm:
1n_V = np.log(V_ideal) # In(V(t)) = ln(V0) - t/tau

plt.figure(figsize=(10,6))

plt.plot(t*le6, 1n_V, 'b-', linewidth=2, label=r'$\1n(V(t)) = \1n(V_0)-t/\tau$')
plt.xlabel('Time (ps)')

plt.ylabel('1ln(Voltage)')

plt.title('Linearized Exponential Decay (slope = -1/tau)')

plt.grid(True)

plt.legend ()

plt.show()

Print the expected linear parameters:

intercept_theoretical = np.log(V0)

slope_theoretical = -1.0 / tau

print ("Theoretical intercept (1n(V0)) =", intercept_theoretical)
print ("Theoretical slope (-1/tau) =", slope_theoretical)

Calculated tau = 7.221263581831692e-06 seconds
Calculated VO = 0.5334427425578737 volts

14

Exponential Decay Envelope

—— |deal Exponential Decay
500 1 @ Measured Peak 1
@® Measured Peak 2
400 ~
z
— 300
v
f=]
i
S
200 A
100
T T T T T T T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (us)
Linearized Exponential Decay (slope = -1/tau)
-0.5
—_— In(V(t)) = In(Vy) — t/T
_1.0 -
_1.5 -
o
o
£ 2.0
3
=
_2.5 -
_30 -
—3.51 T T T T T T T T T
0.0 2.5 5.0 1.5 10.0 12.5 15.0 17.5 20.0
Time (ps)

Theoretical intercept (1n(V0)) = -0.6284035381651645
Theoretical slope (-1/tau) = -138479.91956919365

15

	20bloolw78.pdf
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

	week7

